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Exact solution for quantum dynamics of a periodically driven two-level system
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We present a family of exact analytic solutions for nonlinear quantum dynamics of a two-level system (TLS)
subject to a periodic-in-time external field. In constructing the exactly solvable models, we use a “reverse
engineering” approach where the form of external perturbation is chosen to preserve an integrability constraint,
which yields a single nonlinear differential equation for the ac field. A solution to this equation is expressed in
terms of Jacobi elliptic functions with three independent parameters that allows one to choose the frequency,
average value, and amplitude of the time-dependent field at will. This form of the ac drive is especially relevant
to the problem of dynamics of TLS charge defects that cause dielectric losses in superconducting qubits. We
apply our exact results to analyze nonlinear dielectric response of such TLSs and show that the position of the
resonance peak in the spectrum of the relevant correlation function is determined by the quantum-mechanical
phase accumulated by the TLS wave function over a time evolution cycle. It is shown that in the nonlinear
regime, this resonance frequency may be shifted strongly from the value predicted by the canonical TLS
model. We also analyze the “spin” survival probability in the regime of strong external drive and recover a
coherent destruction of tunneling phenomenon within our family of exact solutions, which manifests itself as
a strong suppression of “spin-flip” processes and suggests that such nonlinear dynamics in LC resonators may

lead to lower losses.
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I. INTRODUCTION

The problem of a periodically driven two-level system
(TLS) appears in many physical contexts including magne-
tism, superconductivity, structural glasses, and quantum in-
formation theory.!~” The interest in this old problem has been
revived recently due to advances in the field of quantum
computing (see, e.g., Refs. 8—12 and references therein).
First of all, a qubit itself is a two-level system and the ques-
tion of its evolution under an external time-dependent pertur-
bation is obviously a relevant one. Also, the physical mecha-
nism that currently limits coherence particularly in
superconducting qubits is believed to be due to other types of
unwanted TLSs within the qubit, whose charge dynamics
under a periodic-in-time electric field gives rise to dielectric
losses directly probed in experiment.'>!'# In what follows, we
mostly apply our solution to the latter charge TLS model, but
the general methods and some particular results of this work
evidently can be applied to a much broader range of prob-
lems (see, e.g., Ref. 15 and references therein).

One of the key metrics of a superconducting qubit is the
quality factor, which is defined as a ratio of real and imagi-
nary parts of the dielectric response function, &(w), evaluated
at the resonant frequency of the corresponding LC circuit,
O=Re ¢(w,)/Im &(w,). Very high values of the quality factor
are required for the qubit to be operational. However, exist-
ing experiments consistently show significant dielectric
losses that occur in an amorphous dielectric (e.g., in Al,05)
used as a barrier in the Josephson junctions. It is believed
that the losses are primarily due to the presence of charge
two-level system defects in the barrier and/or the contact
interfaces, which respond to an ac electric field in the LC
resonator. It is still unclear what the physical origin of these
defects is, but an early work of Phillips'® as well as very
recent comprehensive density-functional theory studies of
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Musgrave!” point to the OH-rotor defects as a very likely
source of the dielectric loss. To determine the physical origin
and the properties of the TLSs responsible for the dielectric
loss is one of the central questions in the field of supercon-
ducting quantum computing and it is largely the main physi-
cal motivation for our work.

The usual theoretical approach to calculating the quality
factor and more generally the full dielectric response func-
tion, &(w), involves a formal mapping of charge dynamics in
a double-well potential onto the problem of “spin” dynamics
in an ac field, described by the spin Hamiltonian H(7)
=b(z)- &, where & denotes the Pauli matrices and b(r)
=[A,.0,e+dp s E()] is an effective “magnetic field” that
drives TLSs with &, A, and c?TLS being the TLS energy split-
ting, the tunneling amplitude between its two states, and the
TLS dielectric moment correspondingly and E(t) is the ac
electric field. A linear analysis within the canonical TLS
model predicts that the dielectric function due to identical
TLSs is peaked at the frequency, v= \f'At2+ g% Ad hoc inclu-
sion of T, and T, relaxation processes and the assumption
about random distribution of TLS energy splittings and tun-
nelings (typically assumed to be uniform and log-uniform
correspondingly) lead to the quality factor Qo1+ (Ey/E,)*
with x~2, E, being the amplitude of an applied ac electric
field and E. is a critical value of the amplitude which also
encodes the information on the strength of the relaxation
processes (see, e.g., Ref. 5). Both formulas are used widely
in interpreting experimental data and probing energetics of
the relevant TLS defects.!> While this linear analysis is a
fine approximation to describe a majority of regimes cur-
rently studied experimentally, the existing experiments are
certainly capable and some do'® access nonlinear regimes as
well, where the energy of the applied electric field is compa-
rable or larger than the relevant TLS energies. Hence, this
nonperturbative regime is of clear experimental and theoret-
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ical interest. More importantly studies of nonlinear dynamics
may provide another effective means to probe the properties
of TLSs.

The mathematical formulation of the nonlinear TLS dy-
namics problem studied in this paper is deceptively simple.
We wish to solve the Schrodinger equation for a spinor wave

function, \If:(?), i0;,¥=b(r)- &V that describes a half-

integer spin subject to a periodic-in-time magnetic field of
the form, b(#)=[A,,0,f(z)], where A, is a constant describing
the coupling between the two states and the function f(z)
=f(t+T) describes the time-dependent perturbation. Despite
the simplicity of the formulation, the problem is generally
unsolvable in analytic form for most cases of practical inter-
est. The origin of this surprising fact can be understood if we
introduce a new function R(7)=.(¢)/_(¢), which reduces
the matrix Schrodinger equation to the Riccatti equation
I_inR=AR+/[1-R?]. It is a nonlinear differential equation
that has known analytic solution in a very limited number of
cases (note that the case of a monochromatic perturbation is
not one of them). Therefore, to solve for TLS dynamics
driven by a specific nonequilibrium field is equivalent to
generating a particular solution to the Riccatti equation cor-
responding to this perturbation. Clearly this is a challenging
mathematical task and this observation partially explains the
current deficit of exact mathematical results. The difficulties
in obtaining exact solutions have led to the emergence of
several perturbative approaches, used, in particular, to char-
acterize relaxation and dephasing rates in qubits as a function
of driving amplitude (see, e.g., Ref. 15 and references
therein). These analyses provide very useful physical insights
and correctly describe the physics if the time-dependent per-
turbation is weak, but it is also clear that there exist nonlin-
ear effects beyond perturbation theory and it is desirable to
have exact results to access this qualitatively different phys-
ics.

The mathematical approach that we use in this paper to
obtain exact results is to “reverse engineer” exactly solvable
Hamiltonians of specific form relevant to the problem of
interest. A key observation in our analysis is that finding a
Hamiltonian corresponding to a given solution is much
easier than solving Schrédinger equation with a given
Hamiltonian. In some generalized sense, the two procedures
are related to one another much like differentiation relates to
integration. To see this, it is useful to consider the evolution

operator, or the S matrix, which relates the initial state at ¢

=0 to a final state at >0 as follows: W(£)=S()W(0). In the
absence of relaxation process the time evolution is unitary
and it satisfies the Schrédinger equation, i&,ﬁ(t):ﬂ(t)g‘ (r). If
we choose an arbitrary S matrix, S =exp[—%¢>(t)-é’]
€ SU(2),, we can immediately reconstruct the corresponding
Hamiltonian that gives rise to such evolution as follows:
7:[(t)=i<9,.§(t)§"'(t). Using this method, one can generate an
infinite number of exact nonequilibrium solutions and ex-
plicit models. These solutions may be of importance to phys-
ics of NMR, to the question of physical implementation of
gate operations on a qubit as well as of some mathematical
interest. Nevertheless without additional constraints such

PHYSICAL REVIEW B 82, 024303 (2010)

analyses would generally produce Hamiltonians of little im-
portance to the problem of dynamics of TLS charge defects.

A very useful insight that allows us to constructively nar-
row down the range of relevant dynamical systems comes
from the mathematically related problem of far-from-
equilibrium superconductivity.!®-2! It is well known that the
reduced BCS Hamiltonian is algebraically equivalent to an
interacting XY-spin model in an effective “inhomogeneous”
magnetic field in the z direction, whose profile is dictated by
the bare single-particle energy dispersion. Far from equilib-
rium, dynamics of a given Anderson pseudospin?? is deter-
mined by an effective time-dependent self-consistent field of
other pseudospins that it interacts with. In many cases (de-
termined by specific initial conditions), this BCS self-
consistency constraint dynamically selects a specific order
parameter, such that the dynamics of essentially infinite num-
ber of spins is equivalent to the dynamics of few spins
only.?! For special sets of initial conditions, these spins move
in unison and therefore the self-consistent “magnetic field”
(or superconducting order parameter in the language of BCS
theory) is periodic in time. The reduced BCS model is inte-
grable and there exists a very elegant prescription for con-
structing exact nonequilibrium solutions to it, developed pri-
marily by Yuzbashyan and collaborators.?%?!23  These
solutions contain, in particular, exact spin dynamics in a pe-
riodic time-dependent field that can be expressed in terms of
elliptic functions. In this paper, we generalize such anoma-
lous soliton solutions of Yuzbashyan?* to encompass a wider
range of time dependencies relevant to the problem of TLS
dynamics, which is of our primary interest.

This paper is organized as follows: Sec. Il summarizes a
general mathematical structure behind the “reverse engineer-
ing” approach to constructing exact solutions for nonlinear
TLS dynamics. The specific Ansatz and technical details of
our particular family of solution for periodically driven TLS
dynamics are given in Sec. III. In Sec. IV, we use some
representative solutions to illustrate the emergence of the co-
herent destruction of tunneling phenomenon. We also derive
the spectrum of exact dielectric response function due to an
ensemble of identical charge TLS in the presence of dissipa-
tion, which is introduced phenomenologically. In Sec. V we
provide a summary of our results. In the appendices we list
some technical details of our calculations as well as useful
relations aimed to shed more light on the subtle features of
our theory.

II. GENERAL FRAMEWORK FOR CONSTRUCTING
EXACT SOLUTIONS

In this paper, we derive a family of exact solutions for the
nondissipative TLS dynamics subject to an external ac field.
The main ingredient of our approach is a special Ansatz for
the TLSs dynamics that corresponds to periodic-in-time but
nonmonochromatic external fields of a special form. Before
proceeding to the specific Ansatz, let us first introduce a
general algebraic framework for reverse engineering of exact
solutions. We are interested in solving the nonequilibrium
Schrodinger equation for the spinor W(z)
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iV (1) =HOP(), V()= (ﬁ) (1)

where the Hamiltonian is 7:{(t)=%b(t)-é'. As mentioned in
the introduction, instead of solving Eq. (1) for the wave
function, we can consider the Schrodinger equation for the
evolution operator that relates initial and final states, W(z)

=S(t,15)¥(to). In what follows we set 7,=0 and drop #, from
the list of arguments in the S matrix for brevity. This equa-
tion for the S matrix has the form identical to Eq. (1)

i35 =H®S@) and S(0)=1 2)

but now it is an equation for the matrix function §(t), which
belongs to the two-dimensional representation of the SU(2)
group, while the Hamiltonian expressed in terms of SU(2),
generators belongs to the two-dimensional representation of
the SU(2) algebra. Note that the form of Eq. (2) is such that
it may be generalized to an arbitrary spin or equivalently to
an arbitrary-dimensional representation of SU(2) or it can be
viewed as an equation of motion in the abstract group such
that  F () =h(0) Jup, e SUQ)  and Sy (n)=expl
—i®(1)-J ] € SU(2), where J ., are the corresponding gen-
erators. Therefore, a solution of the problem in a particular
representation, i.e., an explicit form of ®(r), immediately
gives the corresponding solutions in all other representations
(e.g., a two-level-system dynamics uniquely determines a
“d-level system” dynamics in the same field). This TLS
problem that we are interested in corresponds to the two-
dimensional generators j?:%&a with &,(a=x,y,z) being
the familiar Pauli matrices.

The problem of determining the solution, ®(z), from the
magnetic field time dependence b(r) is a complicated one,
but the inverse problem is almost trivial. Indeed, if we select
a specific § matrix [defined uniquely by the choice of a spe-
cific function, ®(¢)], the Hamiltonian will read

H(r) = id,S(1)SH (1), (3)

where
S(1) = exp[— é«p(z) . &} . (4)

Using the algebraic identities for the Pauli matrices, we ob-
tain the corresponding magnetic field

b(7) = ®n + sin Pni + (1 — cos ®)[n X 1], (5)

where ®(1)=®(r)n(7) with |n(z)|=1. Note that one can gen-
erate exactly solvable models by simply picking an arbitrary
®(r) dependence and using Eq. (3) to find the corresponding
Hamiltonian. However, without guidance or luck, such an
analysis would generally produce complicated nonequilib-
rium fields that have little to do with an underlying physical
problem. Let us, however, mention here that this procedure
may be of interest to quantum computing in general, because
the time-evolution governed by an S matrix can be viewed as
a “gate operation” on the spin (if the TLS/spin corresponds
to a qubit rather than to a defect within a qubit). By picking
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“trajectories,” ®(r), on the algebra that start in the origin,
i.e., @(0)=0, but end at a specific point at a time T, one can
immediately determine the nonequilibrium magnetic pulse,
b(7), or a class of such pulses, that will give rise to a desired
gate operator (A}ES’(T):exp[—éfb(T) G).

Let us note here that the function, ®(¢), contains complete
information about the solution to the original problem, Eq.
(1), including the overall quantum phase accumulated by the
wave function during the time evolution (as we shall see
below, this phase is of particular interest to the problem of
dielectric response of TLSs in superconducting qubits). An
interesting question is whether and how this purely quantum
phase can be restored from a solution of the corresponding
classical Bloch equations that are usually considered in this
context. Let us recall that a classical mapping can be
achieved by introducing the average magnetic moment

m(t) = \I'*(t)g\lf(t). (6)

Therefore, m?(t)=1/4 and the classical equations of motion

for the spin  moment follow from  dJm(r)
:%‘I’*(t)[?fl(t),&]\lf(t) and yield the familiar result
dm(r) =b(z) X m(r). (7)

Let us recall that these Bloch equations are a saddle point of
quantum spin dynamics, much in the same way that New-
ton’s equations of motion governed by the force, [-VV(r)],
represent a saddle point of the action describing a quantum
particle in the potential, V(r), and therefore do not contain
direct information about quantum interference and tunneling
effects. Similarly, Eq. (7) does not directly contain the quan-
tum phase and to determine it one has to go back to the
Schrodinger equation. Another more abstract way to see this
is by noticing that Eq. (7) describes the motion on a two-
dimensional (Bloch) sphere, m(z) € S?, while the original
quantum problem Eq. (2) describes motion on a three-

dimensional sphere since S,,,(f) € SU(2) ~ S3. Now let us re-
call that there exists the Hopf fibration such that
SU(2)/U(1)=S?, which summarizes the fact that classical
equations, namely, Eq. (7), represent quantum motion
modulo the U(1) phase dynamics. Fortunately, this phase dy-
namics can generally be restored from exact dependence of
the m(7) solution, albeit in a nonlocal way. To see this, we
can write the magnetization in terms of the S matrix as fol-
lows: m(r)=3¥(0)[S(1)¢:S(1)]¥(0), where W(0) and the
corresponding m(O)=‘IfT(O)'§"I’(O) are initial conditions for
the wave function and Bloch magnetization, correspondingly.
Using again the well-known identities for the Pauli matrices,
we find the evolution matrix for the Bloch equations, m (r)
=R ,5(t)mg(0), as follows:

R (1) = 8,pc08 @ +nong(l —cos p) —g,p.n, sin .
(8)

This three-dimensional matrix describes a rotation, ﬁ(t)
€ SO(3), and can be represented equivalently as
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0 -e e,
R(t) = exp[— ®(7) - I:] where L= e, 0 -e |,
-e, e 0

)

where L e SO(3)~SU(2) belong to the three-dimensional
vector representation of the SU(2) algebra. They are related

to the “usual” spin-1 representation (where jf) is diagonal)
via a linear transform ja=13‘1£a}3 with

Lot
p=—|i 0 -i
20 V2 0

Therefore, we see that if we know an arbitrary solution to
the Bloch equations, m(z) we can at least, in principle, re-
store the function, ®(r), [see Egs. (4) and (9)], which
uniquely determines the entire quantum solution. It also sug-
gests that if we choose an arbitrary dynamic function on a
sphere we may be able to restore the quantum Hamiltonian
that would give rise to it, via mappings m(t)—>1%(t)—><[>(t)
—S§ (1) —H. However, the second step in this chain of trans-
forms involves effectively calculating a logarithm of the ro-
tation matrix, which due to a complicated “analytic” struc-
ture of this matrix-logarithm function requires a careful
calculation nonlocal in time.

The subsequent sections are devoted to constructing ex-
actly solvable periodic-in-time Hamiltonians based on a spe-
cific Ansatz for the classical Bloch “magnetization,” m(z). It
further involves a restoration of the corresponding quantum
U(1) phase via a straightforward integration. More specifi-
cally, we reverse engineer the following Hamiltonian:

H=AG,+f(1)6.. (10)

where f(t)=f(t+Ty) is a periodic function with an arbitrary
period, Ty Our solution below also allows tuning of the av-
erage splitting, 8=<f(t)>7~f and the ac-field amplitude, A,
=([f(t)-&]*)7. As mentioned in the introduction, this prob-
lem is of great importance to the physical problem of exter-
nally driven TLS dynamics in superconducting qubits (with
A, corresponding to tunneling between the wells, € to a split-
ting of energy levels in a double-well potential, and 7y and A,
corresponding to the period and the amplitude of the ac-
electric field correspondingly).

Our “guess” for the relevant Ansatz for the Bloch magne-
tization, m(#), is based on a set of formal solutions discov-
ered in the related problem of quenched dynamics of fermi-
onic superfluids.'®-132* Formally, the quenched dynamics
of each individual Cooper pair is described by the
Bogoliubov-de Gennes Hamiltonian, which is essentially a
spin Hamiltonian that reduces to Eq. (10) after the unitary
transformations 6,— &, and 6, — —&, with A corresponding
to a single-particle energy level and f(7) to the superfluid
order parameter. A realization of each particular form of the
superfluid order parameter dynamics in a steady state can be
unambiguously determined by the initial conditions?' using
the exact integrability of BCS model.?’ Note that a self-
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consistency condition for the order parameter provides a
limitation on the set of functions for which the corresponding
problem is integrable and for some initial conditions
periodic-in-time self-consistent dynamics, f(f), can be real-
ized. While in our TLS problem, there is no natural self-
consistency constraint, such insights and constraints from the
BCS problem help us narrow down the range of possible
Ansatz to restore reasonable physical Hamiltonians, which
are also exactly solvable by construction.

In what follows, we generalize the soliton analysis of
Yuzbashyan® and find a general soliton configuration, char-
acterized by three independent parameters, which we denote
as A, and A,. For the physical problem of interest, this
conveniently implies that some, generally speaking, non-
trivial combination of these parameters will determine the
arbitrary frequency, amplitude, and the dc component of the
field. Due to the periodicity, we can generally represent the
ac perturbation as a Fourier series

(D) =g+ A2 f, cos(nwyt). (11)
n=1

Note that for certain specific choices of the parameters A ,,

the leading coefficient fl >fn(n=2,3,...) and one recovers
the limit of a monochromatic ac field, albeit in the regime of

weak driving (Affl<max{Al,8}). Therefore, our nonlinear
analysis contains the standard linear-response results as a
simple special case.

III. NONDISSIPATIVE DYNAMICS OF THE
ac-DRIVEN TLS

In this section we provide the details on the derivation of
the exact solution for the TLS dynamics. We devote the spe-
cial attention to the analysis of the U(1) phase of the wave
function. We also elucidate the relations between the param-
eters of our solution and the amplitude, phase and the dc
component of the external field, which may be useful for
experimental applications of our theory.

A. Ansatz

We now focus on the Schrodinger equation for the half-
integer spin in the magnetic field, b(z)=2[A,,0,(r)]. When
written in terms of spinor components, it has the form

i, = A+ (1),

i = A, ~ fO) Y. (12)
The corresponding Bloch equation is
m(7) =2[A,0,/()] X m(r). (13)

Let us now make the following Ansatz for its exact
solution:?*

m,=D-Cf*, m,=Bf, m=Af()+F. (14)

From two of the Eq. (13) we find A=2AB and B=C. Thus
among five parameters in Eq. (14) only three are indepen-
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dent: F, B, and D. The equation for the external field, f(z),
can be obtained from Eq. (14) using the condition m*=1/4.
This resulting equation for the function f(¢) acquires the
form

== f —deyf> +8c,f - 4cy, (15)

where coefficients ¢; are given by some combinations of pa-
rameters B, D, and F [see Eq. (30) below]. Equation (15) can
be cast to a more symmetric form, using another set of pa-
rameters A, and A, which are chosen to be positive and are

related to coefficients ¢ ; as follows:

A,
c =- Z(Ai -AY),
1
cy== (AL +AZ+2A),

ey= (A1 A))(87 - A2, (16)

Without loss of generality and to be more specific we also
assume A, = A_ for the remainder of this paper while A, can
be assigned an arbitrary value. By virtue of expressions in
Eq. (16), Eq. (15) now reads

P =l -2 - AZ][A - (f+ 407 (17)

Below we will make several transformations that allow us to
reduce Eq. (17) to an equation for the Weierstrass elliptic
function.? First, let us introduce a function, y(z),

2
[ =A [——1]—Aa (18)
Ly
which satisfies the following equation:
dy\? ALt
(d—> =4(y-a)y-a)y-1), x=—7=—=, (19)
X Va,a_

where a-=2A_/(A,+2A,% A_). Now, Eq. (19) can be easily
reduced to a well-known equation for the Weierstrass elliptic
function by rescaling the parameters via the transformation

y(x) =Z(x) + % (20)
so that
2
(Z_Z> =4(Z—31)(Z—€2)(Z—€3)’ (21)
X

where parameters e; satisfy the following conditions: e,

>ey>e3 and e+e,+e3=0. Coefficients e; are determined
by the parameters A, and A.. The specific expressions for
the coefficients e 18 however, depend on the relative values of
the initially introduced set of parameters and are given in

Appendix A. Solution of the Eq. (21) is

PHYSICAL REVIEW B 82, 024303 (2010)

Zx)=Px+ o), o =—F——, (22)

where P(x) is a Weierstrass elliptic function, K is a complete
ellipic _integral of the first kind® and &’
=v\(e,—e,)/(e;—e3). In the case of complex variable x, func-
tion Z(x) is a doubly periodic function with the periods along
real and imaginary axes. The real period for our case along
the physical time axis determined by, /=2w, where w
=K(k)/\e;—e; and k=\1-«'? is a modulus of elliptic func-
tions. Combining Eq. (22) with Egs. (18) and (20) allows us
to express f(7) in terms of elliptic functions. Expression for
f(#) can be compactly written in terms of Jacobi elliptic func-
tions. Just as it is the case for the parameters ¢;, the particular
form of the resulting expression depends on the relation be-
tween A, and A (see Appendix A).

All cases considered here are summarized by the follow-
ing compact expression for the function, f(z), written in
terms of Jacobi elliptic function sn as follows:

7, sn*(z,x) — 1
7. sn’(z, k) + 1

f)=A, A, (23)

where variable z is

(t—15)
2

7= VA, +2A,)% = A%](e; — 3) (24)

and ty=—w'Va,a_/A,. If we consider A fixed, than param-
eters 7. are given by one of the following expressions de-
pending on the value of A:

r
1
. Aa>A++A_
€| —e3
1 A, -A A, +A
7 =9 + k2 T——=A,= + 0 (25)
- €1 —¢€3 2 2
1 A, -
A, < A’.
. €)1 —e3 2

From the expression for the external field Eq. (23) it is, how-
ever, not immediately clear what set of parameters corre-
spond to the regimes of weak and strong ac driving (see Figs.
1 and 2). To clarify this issue, let us rewrite Eq. (23) in the
form more useful for practical applications. Let us first ex-
plicitly derive the amplitude, frequency, and the dc compo-
nent of function f(z). The period and the amplitude of oscil-
lations of a function f(¢) can be immediately deduced from
Egs. (23) and (24)

- 4K (k)
TA, 4287 - A20(e - e3)
A (et
Ar=7 ( 7 +1 ) (26)

Lastly, the average value of the function f(¢) over its period
is
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FIG. 1. (Color online) TLS dynamics on the Bloch sphere in
Eqgs. (13) and (14). Trajectories of TLS for the solutions described
by Eq. (23) and depicted in figure for the various set of parameters
A, and A.. The latter take the same values used in Fig. 2.

_ (7. +n)
7.K(x)

A
(flyy ==+

1 -7,k |-A,=¢
7

27)

with K(«) and I1(n, x) being an complete elliptic integral of
first and third kinds correspondingly. As we have already
mentioned, quantity in Eq. (27) describes the dc component
of the external field. One can view Egs. (26) and (27) as the

N TOE T T T T o ® .

‘ ‘
10 A 20 30
:
0.5 T T T
@
il ]
-0.5| &
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=
4 ]
1.5 B
-1.51 B
_ s - o —— 3 SN S WS S SR SR S S S S U — |
10 20 30 40 50 20 40 60 80 100 120
At At

FIG. 2. (Color online) Plots of the function f(¢) in Eq. (23) in
units of A, for different values A, (a) A,=0.1A,, A_=0.3A,; (b)
A,=05A,, A_=03A,; (¢) A,=03A,, A_=0.1A,; and (d) A,
=0.5A,, A_=0.001A,. We note that for the choice of the parameters
(d) the period of f(r) diverges. The curves above are plotted for the
value of A;=0.5A,.
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4 ’ 1 . 1 ; P
0.2 04 0.6 0.8 1
A_IA,

FIG. 3. (Color online) Plots of the amplitude A/, frequency wy,
and dc component & of the external field f(z), Eq. (11): (a) A,
=0.1A,, A,=0.3A,; (b) A,=0.5A,, A,=0.3A,.

definition of yet another set of parameters Af, w=27/T,
and e={(f(z)), which allows us to cast external field f(z) into
the form given by Eq. (11). We plot the dependence of these
parameters on the ratio A_/A, in Fig. 3 for different values
of A, while keeping the value of A, fixed. As we can see
from Fig. 3 the limits of strong and weak ac driving are
easily attainable with the frame of our solution. In particular,
we see that the regime of the strong ac driving should be
achieved for moderate values of A, and A_/A,~0.2.

Expressions (23)—(25) constitute to one of the main re-
sults of this paper. To get further insight into the properties of
our solution we refer the reader to Appendix B where we
consider few limiting cases for the function Eq. (23). Quite
generally, our solution represents the superposition of mono-
chromatic waves with frequencies integer multiples of wy
=2m/T;. As discussed in the Appendix B, solution in Eq.
(23) can be reduced to the monochromatic wave with fre-
quency 2A, when A,=0 and A_=A,.

B. Wave function

Having determined the form of the periodic field f(¢) we
employ the relations in Eq. (6) to compute the amplitudes
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(1) and i_(r). First let us represent these functions as
follows:23

P (1) = |the (1) | T TP, (28)

From these expressions, it follows that absolute values of the
components ¢, and i_ as well as their relative phase ¢(z) are
determined by the instantaneous value of magnetization Eq.
(14). From Egs. (6) and (14), we find

1
[ (1)] = \/E = 2ABf(t) * F,

/

tan[2(1)] = ————5—, (29)
(D/B) - f(1)
where parameters B and D are determined from
D 1
—=2(A[2—c2),B= ,
B \/ e
4 (AZ—C2)2+_—C3
t A[Z
F=-2cB/A,. (30)

and parameters c;’s are given by Eq. (16). Note that apparent
ambiguity in signs for the parameters B and D as well as for
parameter F is resolved by fulfilling the condition m?>=1/4.

C. Restoring the U(1) phase

As we have already mentioned in the beginning the com-
mon phase a(t) has to be determined from the solution of the
Eq. (12). At first sight the resulting equation for «(r) appears
to be very complicated. That equation, however, can be sig-
nificantly simplified using expressions in Eq. (29), so that

1 f(t)ym (1)
-

(31)

After some algebraic manipulations, we find

! 42 d’
“(”=fo At{ﬁ(ﬂ)—di“f%z')—d%}

il ft")
2B[f(t) - 111 - 2]
where ¢ is determined by the initial conditions, di
=(1/2B) =D/B. One can evaluate the integral in Eq. (32)
exactly and express in terms of elliptic o and { functions (see
Appendix C for details of this calculation). We note that on

the grounds of Floquet theory we can represent an expression
for the phase «(r) as a sum of two terms

}dr’ +ap (32)

a(t) — ag=— vt + Y1), (33)

where ¥(1)=(t+T)) is a periodic function and v is a con-
stant. Analytic expression for both of these quantities can be
extracted from the analytic expression for «(z) listed in Ap-
pendix C. For example, from Eq. (33) it follows v=[a(z)
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FIG. 4. (Color online) Dependence of exponent v as a function
of the ratio A_/A, for various values of A,. On panel (a) we com-
pare the result of numerical computation of » from Eq. (32) and
compare them with approximate expression (34) when A,=0. Panel
(b) shows the dependence of v for A, # 0.

—a(t+Ty)]/ Ty In the limit when A,=0 and A,=A_ we find
v=(A2+A?)"2, while in the limit when A,=0 and A_=0 we
obtain v=A,. For a general set of values A, and A. the
resulting expression for v is not as simple as those listed
above. For the practical purposes, however, one can con-
struct an approximate expression for v. By analyzing the
behavior of a(f) numerically we find that for A,=0, fre-
quency v can be approximated [see Fig. 4(a)] by

1 (v 5——
(A, =0) = - f VA + f(t)dr. (34)
fJ0

We find qualitatively different behaviors of v as a function of
6=A_/A, for nonzero A,. In that case, there appears to be a
discontinuity in v at some critical value of A_/A,. The
source of this discontinuity at least for small A, lies in the
fact that d(r) m,(r) changes sign during its time evolution.
For nonzero A, there are always exists &, such that m_(¢
=0)=0 while for 6>, one observes m (0<t,,<T,)=0.
The sign change in m_(¢) implies that the derivative of the
quantum phase will change sign also, Eq. (31), so that the
subsequent integration yields the value of v smaller than the
one found for < &,, Fig. 4(b).

In order to get further insight into the physical meaning of
the quantity v, we can employ the analogy between the TLS

024303-7



GANGOPADHYAY, DZERO, AND GALITSKI

and spin-1/2 and define the magnetization M ,(r)
=(W,(1)|6,| W (1))/2, where W (1) is a general solution of
the Schrodinger equation and can be expressed as a linear
combination of the particular solution W(¢) (see below).
Then one can show?? that the dynamics of the vector M can
be represented as a linear superposition of vector 7i(z) pre-
cessing with the frequency of the field f(r) and a vector h(z)
such that /2-/i=0. Each component of the latter oscillates
with frequency v. Our results from Fig. 2(b) suggest that the
rate of precession of vector i will be significantly reduced as
one tunes the parameter A_/A,.

The solution of the Schrodinger equation we described
above is only a particular solution from which the general
solution can be constructed straightforwardly by taking ad-
vantage of the underlying symmetries of Eq. (12). The gen-
eral solution for the wave function ¥'=(¢7, /") reads

(1) Y1)
Velt) = Cl(w_(t) ) ’ Cz(— A0 ) (35)

where C,, are integration constants, which satisfy |C,J?
+|C,)?=1 and are to be determined from the initial condi-
tions. For example, for the specific choice of an initial con-
dition when the TLS at r=0 resides in one of its two states

1
W, (0) = (0 ) (36)
the coefficients C, , are

Ci=¢,0), Cy=4(0). (37)

Expressions listed in this section amount to full description
of the ac-driven dynamics of an isolated TLS. In the next
section, we will briefly outline several applications of our
theory. For simplicity, we will mostly focus on the properties
of the nondissipative dynamics.

IV. EXPERIMENTAL MANIFESTATIONS

In this section we discuss the physical behavior of several
quantities which can be probed experimentally for various
physical realizations of the TLS. Before we proceed with the
discussion on the application of our results and computation
of physical observables, we derive the expression for the
evolution operator and the density matrix which will allow
us to compute probabilities which characterize the dynamics
of the TLS.

Evolution operator S (2) is defined by

W (1) = S(1)V,(0). (38)

From expressions in Eq. (35) one can always write down a
general expression for the evolution operator, which is valid
for arbitrary initial conditions

g(t):(mr) Q) )(wi(m ¥(0)
g =9 /\g(0) —,(0)

Note that it is now straightforward to derive the density ma-
trix from Eq. (39) using the following expression:2®

). (39)
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(1) = S(1)poS (1), (40)

where py is the density matrix of an initial state of the TLS.
The expressions (39) and (40) can be used as a basis to
analyzed the effects of the environment dissipation on the
dynamics of the TLS. In particular, one can determine the
probability of the TLS to remain in the initially prepared
state Py_;(¢).

A. Coherent destruction of tunneling

The phenomenon of the coherent destruction of tunneling
(CDT) has been predicted theoretically?’> for various
physical realizations. Qualitatively, this phenomenon can be
interpreted as the dynamical trapping of the TLS in one its
states. For example, CDT occurs when the survival probabil-
ity of the initial state dynamically approaches unity. This
phenomenon has its counterpart known in literature as driv-
ing induced tunneling oscillations. This effect has been first
analyzed theoretically in a series of papers3*=? and observed
experimentally for the first time by Nakamura et al.3* To
compute the survival probability P;_,;(¢) we can use the den-
sity matrix Eq. (40). It is, however, easier to use an expres-
sion for the wave function Eq. (35) with the initial conditions
in Egs. (36) and (37). In particular, let us choose the initial
amplitudes such that both C; and C, are real and introduce
an angle 9 so that C;=cos(9/2).

After some algebra, we obtain the following expression
for the return probability:

P ()= % +cos U m(t) +sin O cos[2a(r)] - / i - m?(t).

(41)

The CDT occurs when P;_,;(#)=1 and we assume the initial
conditions in Eq. (36). From Eq. (41) it follows that if we
perform an averaging over time frame longer than 7, and
T,=27/ v, the third term in Eq. (41) averages out to zero, so
that employing Eq. (14) we find

(P () = % +2 cos ﬂAlB<s - %) . (42)

t

This equation approximately determines the parameter range
for which CDT occurs. Figure 5 displays representative re-
sults for the return probability and illustrates the CDT phe-
nomenon. As we can see, in the limit of strong driving, i.e.,
when A,> A, and w;>A,, the return probability remains of
order unity, which implies that the tunneling processes be-
come strongly suppressed. We also have found that CDT
remains robust and is present as long as the parameters A,
and A, are such that the dynamics of the TLSs remains in
the strong driving regime. This qualitative behavior of tun-
neling was found to be essentially independent of the ratio
e/A,. These findings agree qualitatively with the results re-
ported previously in Ref. 15 for the monochromatic ac field
and those from Ref. 32. Finally, we note that if a system of
charged TLSs, e.g., OH rotors present in Al,O5 dielectrics, is
driven into such nonlinear CDT regime by an external ac
electric field, then the TLS tunneling and the corresponding
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FIG. 5. (Color online) Plots of the return probability P;_(),
Eq. (41), in the limit of the strong ac driving: (a) £=8.5A,, Ay
=13.5A,, w;=214; (b) £=0.1A,, A;=13.5A,, w=8A,.

dipole polarization dynamics will be strongly reduced. This
suggests that a strong nonlinear drive may actually corre-
spond to lower losses.

B. Dielectric response

Figure 6 provides a pictorial example of a TLS charged
defect—an OH rotor, which is one of the most likely candi-
dates of physical two-level systems responsible for dielectric
losses in superconducting qubits. This rotor has a nonzero
dipole moment p and, therefore, responds to an applied ex-
ternal electric field g(t). In the absence of other interactions
which may affect TLS dynamics, the Hamiltonian describing
the dynamics is Eq. (10) with f(f)=e+j-&(7). By construc-
tion, the average dipole moment of an isolated TLS is deter-
mined by the following average within the spin mapping:?

() =m,(1)p. (43)

The linear dielectric response function can be computed
from Eq. (43) by differentiating the corresponding compo-
nents of the average dipole moment with respect to the am-
plitude of an external field &. To define a nonlinear dielectric
response function corresponding to a solution m,(t), which
generally is a complicated function of the amplitude, we con-
sider the spin-spin-correlation function. Up to a prefactor,
given by the angle between the initial direction of the dipole
moment relative to the external magnetic field, the dielectric
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FIG. 6. (Color online) Schematic representation of the two-level
system as a OH rotor in Al,O5 oxide. Here the role of the general-
ized variable is assigned to the angle € defined as an angle between
the OH bond and an axis perpendicular to the vertical AlO bond. At
low enough temperatures the phase space, an isolated rotor, is re-
duced to the two states corresponding to the minima of the double-
well potential V(6). Application of external ac field parametrically
coupled to the rotor’s dipole moment induces oscillations between
the two minima.

response of an isolated TLS is defined by the Fourier com-
ponent of the following correlator:

e(w) = iJ e e[ 6,(1),6.(0)])dt, (44)

0

where square brackets denote a commutator between the cor-
responding spin operators. The exponential prefactor de-
scribes the dissipative effects of the environment and aver-
aging is taken over the initial state of the TLS. We are
introducing the dissipative effects on a phenomenological
level only and ignore the difference between the relaxation
and dephasing processes. This is sufficient to get insight into
the general properties of the exact spectrum of the dielectric
response due to an ensemble of identical TLS. Operators
G,(1) in Eq. (44) correspond to the Heisenberg representation

6,0 =5"(1)6.5(:). (45)

We remind the reader that formally the evolution operator
S(1) is given by

t

S(t) =T exp[-i f H(t')dr'] (46)
0

with 7 being a time-ordering operator. Using Eq. (39) and
assuming the initial conditions W'(0)=(a*,b*) for the cor-
relator K(1)=3([6.(1),6,(0)]) under the integral in Eq. (44)
we find

K(1) =4\ 1/4 — 52 (r)sin[24a(r)] (47)

where s.(f)=1/2|u*~|v|* and phase d(t) can be expressed in
terms  of  original spins  m,(t),m(), and m.(t)
and the phase a(r) by the unitary transformation .
=(v*u)/\(2). We have also fixed the initial value of the
field, so that -(f)(0)=0. Here mi(t):y"1/4—m§(t) and we
have fixed the initial value of the field so that £(0)=0. The
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sor ——- Re[e, ()]

N Im[sxx(m)]
20 E

/v

FIG. 7. (Color online) Plot of real and imaginary parts of the
response function €(w). Note that discontinuities in real part and the
peaks in imaginary part of the response function appear at frequen-
cies wg,=2(nw=*v), (n=0,*=1,*2,...) in agreement with expres-
sion (48). These plots has been obtained for the following values of
the parameters: A,=0.15A,, A_=0.3A,, and A;=0.5A,.

subsequent time integration yields an expression for the di-
electric response function. Analytic analysis of the response
function €(w) is hindered by the fact that the correlation
function XC(7) is only a quasiperiodic function of time, since
it is expressed as a combination of two periodic functions
with different periods T, and T}, [Eq. (33)], so that we have to
resort to numerical calculation. In Fig. 7, we present repre-
sentative plots of real and imaginary parts of &(w) [Eq. (44)]
for the initial conditions in Eq. (36). To interpret our results,
we recall that the common phase, a(r), can be written as a
sum of a linear-in-¢ term plus a periodic function Eq. (33).
Since m | (t) is a periodic function with the period 7}, we can
express the corresponding terms in Eq. (47) in a Fourier
series. Subsequent time integration yields a response func-
tion of the following type:

)= A - (48)

n=—00

w—2nwfi 2v+ —
r

where g, are the corresponding Fourier coefficients. From
this expression, we see that the peaks in the imaginary part
of the response function describing the energy losses due to
TLSs appear at frequencies, w;,=2(nw = v), commensurate
with the driving frequency but with an overall shift deter-
mined by the quantum-mechanical phase collected by a TLS
over one cycle, v. Note that within the linear-response
theory, one typically keeps only the lowest Fourier harmonic
in the spectrum (n=0) and neglects all others. For the case of
a monochromatic field the Fourier component with n=0 is
kept so that

1
€in(w) = 802 —i s (49)
= W+ 2av+ —
r

and we recover the textbook result for the dielectric response
function.’ For a fixed set of parameters, however, one would
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only keep the largest contribution to the imaginary part of
€(w). For example, the imaginary part of €(w) is the largest
for w*=2v. Note also that apart from a difference in the
value of the resonant frequency (which in the regime of weak
driving is given by the energy that governs a stationary time
evolution of a TLS eigenstate in the absence of any pertur-
bations, v= \J'At2+82, the response functions for the case of
monochromatic field and the field given by Eq. (23) are
qualitatively the same.

In the array of noninteracting TLS, the response function
must be averaged over a distribution of the barrier heights,
direction of the electric field, etc. We leave the detailed
analysis directly applicable to the array of noninteracting and
pairwise interacting TLS for a future publication.

V. CONCLUSIONS

In this paper we presented an exact solution for the prob-
lem of ac-driven dynamics of a generic two-level system.
Our approach was based on deriving of a nonlinear differen-
tial equation for the driving field, which has admitted an
exact solution. The key feature of our solution for the exter-
nal field is that it is fully described by three independent
parameters. We have shown that one can interpret different
nonlinear combinations of these parameters as an amplitude,
frequency and a dc component of the field. Being very gen-
eral in nature, we believe that our results and methods can be
applied to a wide variety of experiments ranging from NMR
to the analysis of dielectric losses in amorphous materials.
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APPENDIX A: CALCULATION OF THE PARAMETERS ¢;

In this appendix, we provide explicit expressions for the
parameters e;’s, which determine the explicit form of our
exact solution for the external field in Eq. (22). As mentioned
in the main text, the particular expressions for these param-
eters, ¢;, depend on the relative values of A, and A... For the

choice corresponding to

A_+A
A, = = (A1)
2
we have
1
e(ll) = 5(2 —a,-a.),

1
6(21) = E(Za_—a+— 1),
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1
egl)=§(2a+—a_— 1). (A2)
In the opposite case of
Sl SN (A3)
2 “ 2
we have
@_ ]
e;’=-Qa_-a,-1),
3
P=-(2-a_-a,),
1
¢'=20a,—a_-1) (A4)
Finally when
A, —A_
A== (A5)
we have
@ _ L
e;’=-Q2a_-a,-1),
3
3 _ ]
ey’ ==2a,—a_-1),
3
1
e(33) = 5(2 —a_-a,). (A6)

We also remind the reader, that the coefficients a. in the
above equations are given by a+~=2A,/(A,+2A,+A_).

APPENDIX B: EXACT SOLUTION FOR THE FUNCTION
Jf(t): SPECIAL CASES

In this appendix, we consider a few special cases, where
the exact solution given by Eq. (23) (which is generally de-
scribed by three independent parameters) is reduced to a de-
generate function with simpler properties, which is charac-
terized by two parameters only. The first case we consider
corresponds to A,—0. As shown below, the choice of A_
=A, corresponds to an external field of the following form,
f(t)=A,[1+q cos(2A,1r)] with ¢g<1. Another case consid-
ered here is the limit A_— 0, but with both A, and A, kept
finite. In that case, f(r) can be represented as a single isolated
soliton.

1. Limit of A,—0

Our goal here is to recover the limiting case for our solu-
tion corresponding to §,=0. It can be shown that in this limit

-k

2
K="+,
1+k

k=6, k=\V1-k' (B1)

and the solution for the driving field reads
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2 1}. (B2)

flo= A+{ PIRA (- 1))+ 15

We demonstrate below that the expression in the brackets
can be cast into single Jacobi elliptic function dn (A,z,k).
For this, we use the identity

u 1
P( \’T-Q) =€3+(€1—€3)Sn2(u’K)’ (B3)
such that it gives
| k) = (e —e3)
fo= A*[ (1,10 + (- e3>] By

and variable u equals u= %(1 +6_)A, . This expression can be
further simplified by means of the following relation be-
tween the Jacobi elliptic functions:

1 = k sn*(u, &)

d s = , B5
(. k1) 1 + & sn’(u, k) (B5)
where
-
2 /
u=(1+u, x = 1:_’; (B6)

Indeed, from expressions in Eq. (A6) for A,=0 we have

- 1-46. 1
k= 252 = , (B7)
€| —ée3 1+5_ €| —e3
so that x;=k and we find
f() == A, dn[A(t - 19) k]. (B8)

Finally, when k—0(A_—A,) it follows? that
f(t) == A+|:1 +q COS(2A+I)],

qg<<l1. (B9)

We find that for the special values of parameters the line
shape of the external field is given by the cosine.

2. Limit A_—0

To derive an explicit form of the driving field, f(7), in this
case, we work with the general solution in Eq. (23). Let us
first assume that

A,=A2.

Then, the case A_=0 corresponds to k=1, which in turn im-
plies

1
sn(u,1) =tanh(u), wu= EM (B10)

and N=VA?—4A% After some simple algebra, we find
\2

-—|A :
! at 2A,— A, cosh(\1)

(B11)

Which, up to the minus sign, is exactly the same expression
as the listed in Ref. 24. Finally, let us consider the parameter
range with
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A, = A2 (B12)

According to the expressions above for that case k=0 and
sn(u,0)= sin(\'4A§— Ait/Z). It follows:
4A,(2A,-A)/IQRA,+AL)
20,-A,°
2A,+A,

f=-B,+ (B13)

1- cos(\,4AZ - Ait) +2

We see that when A_=0 external field has a line shape of a
single pulse. Note that our solutions in Egs. (B11) and (B13)
do not contradict to our assumption of the periodicity of f(z)
since both these solutions correspond to the case where the
period of f(z) goes to infinity.

APPENDIX C: CALCULATION OF THE
COMMON PHASE «(z)

In this appendix, we outline the main steps, which allow
to compute the integral [Eq. (32)] exactly. The calculation
includes the following transform of the special functions in-
volved that reduces the integrand to a form amenable for

d [P+ ') +1-¢]
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exact integration of the Weierstrass elliptic function:?’

fa’P(u)+ﬂd _a ad-PBy

=—u+
P +s YT s

X[logM—bt{(v) , (C1)

o(u—-v)

where @, B, 7y, 6 are some constants, a parameter v is
determined from the derivative of the Weierstass function,
P'(v)==06/y, o(u) and {(u) are the Weierstrass elliptic
sigma and zeta functions.?

The next step is to write down the function, f(), explicitly
in terms of the Weierstrass function. Combining expressions
in Egs. (18), (20), and (22), we have

Px+w')-1-e¢;

Px+ow')+1-e¢;

f(t)=—A+[ ]_Aa7 (C2)

where a.=2A,/(A,+2A,=A_), x= 2

depending on the value of A, (see App+er_1dix A). Let us now
consider the first integral in Eq. (32)

,and j=1, 2, or 3

t d2 J’ X
[ —
o ) - dy 24, Jo

Here the index j of the coefficient e; is determined by the
value of A, (see Appendix A). The remaining terms can be
written in a similar form and the corresponding integrals can

(A, +A,—d )P + ')+ (A, —d)(1—e) = A (1+e)

(d,—-d,)(dx'. (C3)

be evaluated using Eq. (C1), as we have done for the first
one in Eq. (C3). Since the resulting expressions for the a(r)
turn out to be too cumbersome, we do not list them here.
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